Search results for "EFFECTIVE FIELD THEORIES"
showing 10 items of 20 documents
Dijets at Tevatron Cannot Constrain SMEFT Four-Quark Operators
2019
We explore the sensitivity of Tevatron data to heavy new physics effects in differential dijet production rates using the SMEFT in light of the fact that consistent and conservative constraints from the LHC cannot cover relatively low cutoff scales in the EFT. In contrast to the results quoted by the experimental collaborations and other groups, we find that, once consistency of the perturbation expansion is enforced and reasonable estimates of theoretical errors induced by the SMEFT series in $\frac{E}{\Lambda}$ are included, there is no potential to constrain four-quark contact interactions using Tevatron data. This shows the general difficulty of constraining physics model-independently …
On the validity of perturbative studies of the electroweak phase transition in the Two Higgs Doublet model
2019
Abstract Making use of a dimensionally-reduced effective theory at high temperature, we perform a nonperturbative study of the electroweak phase transition in the Two Higgs Doublet model. We focus on two phenomenologically allowed points in the parameter space, carrying out dynamical lattice simulations to determine the equilibrium properties of the transition. We discuss the shortcomings of conventional perturbative approaches based on the resummed effective potential — regarding the insufficient handling of infrared resummation but also the need to account for corrections beyond 1-loop order in the presence of large scalar couplings — and demonstrate that greater accuracy can be achieved …
Lepton-flavour violation in hadronic tau decays and μ-τ conversion in nuclei
2021
Within the Standard Model Effective Field Theory framework, with operators up to dimension 6, we perform a model-independent analysis of the lepton-flavour-violating processes involving tau leptons. Namely, we study hadronic tau decays and $\ell$--$\tau$ conversion in nuclei, with $\ell = e,\mu$. Based on available experimental limits, we establish constraints on the Wilson coefficients of the operators contributing to these processes. Our work paves the way to extract the related information from Belle II and foreseen future experiments.
Efficient resummation of high post-Newtonian contributions to the binding energy
2021
A factorisation property of Feynman diagrams in the context the Effective Field Theory approach to the compact binary problem has been recently employed to efficiently determine the static sector of the potential at fifth post-Newtonian (5PN) order. We extend this procedure to the case of non-static diagrams and we use it to fix, by means of elementary algebraic manipulations, the value of more than one thousand diagrams at 5PN order, that is a substantial fraction of the diagrams needed to fully determine the dynamics at 5PN. This procedure addresses the redundancy problem that plagues the computation of the binding energy with respect to more "efficient" observables like the scattering an…
The HiggsTools handbook: a beginners guide to decoding the Higgs sector
2018
This report summarises some of the activities of the HiggsTools initial training network working group in the period 2015–2017. The main goal of this working group was to produce a document discussing various aspects of state-of-the-art Higgs physics at the large hadron collider (LHC) in a pedagogic manner. The first part of the report is devoted to a description of phenomenological searches for new physics (NP) at the LHC. All of the available studies of the couplings of the new resonance discovered in 2012 by the ATLAS and CMS experiments (Aad et al (ATLAS Collaboration) 2012 Phys. Lett. B 716 1–29; Chatrchyan et al (CMS Collaboration) 2012 Phys. Lett. B 716 30–61) conclude that it is com…
Effective field theory after a new-physics discovery
2018
When a new heavy particle is discovered at the LHC or at a future high-energy collider, it will be interesting to study its decays into Standard Model particles using an effective field-theory framework. We point out that the proper effective theory can not be constructed as an expansion in local, higher-dimensional operators; rather, it must be based on non-local operators defined in soft-collinear effective theory (SCET). For the interesting case where the new resonance is a gauge-singlet spin-0 boson, which is the first member of a new sector governed by a mass scale $M$, we show how a consistent scale separation between $M$ and the electroweak scale $v$ is achieved up to next-to-next-to…
Consistent Searches for SMEFT Effects in Non-Resonant Dilepton Events
2019
Employing the framework of the Standard Model Effective Field Theory, we perform a detailed reinterpretation of measurements of the Weinberg angle in dilepton production as a search for new-physics effects. We truncate our signal prediction at order $1/\Lambda^2$, where $\Lambda$ denotes the new-physics mass scale, and introduce a theory error to account for unknown contributions of order $1/\Lambda^4$. Two linear combinations of four-fermion operators with distinct angular behavior contribute to dilepton production with growing impact at high energies. We define suitable angular observables and derive bounds on those two linear combinations using data from the Tevatron and the LHC. We find…
Consistent QFT description of non-standard neutrino interactions
2019
Neutrino oscillations are precision probes of new physics beyond the Standard Model. Apart from neutrino masses and mixings, they are also sensitive to possible deviations of low-energy interactions between quarks and leptons from the Standard Model predictions. In this paper we develop a systematic description of such non-standard interactions (NSI) in oscillation experiments within the quantum field theory framework. We calculate the event rate and oscillation probability in the presence of general NSI, starting from the effective field theory (EFT) in which new physics modifies the flavor or Lorentz structure of charged-current interactions between leptons and quarks. We also provide the…
Global fit to b → cτν transitions
2019
Abstract We perform a general model-independent analysis of $$ b\to c\tau {\overline{\nu}}_{\tau } $$ b → cτ ν ¯ τ transitions, including measurements of ℛ D , ℛ D∗, their q 2 differential distributions, the recently measured longitudinal D* polarization $$ {F}_L^{D\ast } $$ F L D ∗ , and constraints from the $$ {B}_c\to \tau {\overline{\nu}}_{\tau } $$ B c → τ ν ¯ τ lifetime, each of which has significant impact on the fit. A global fit to a general set of Wilson coefficients of an effective low-energy Hamiltonian is presented, the solutions of which are interpreted in terms of hypothetical new-physics mediators. From the obtained results we predict selected $$ b\to c\tau {\overline{\nu}}_…
Higgs boson pair production in the D = 6 extension of the SM
2014
We derive the constraints that can be imposed on the dimension-6 effective theory extension of the Standard Model, using gluon fusion-initiated Higgs boson pair production at the LHC. We use a realistic analysis focussing on the hh→(bb¯¯)(τ+τ−) final state, including initial-state radiation and non-perturbative effects. We include the statistical uncertainties on the signal rates as well as conservative estimates of the theoretical uncertainties. We first consider a theory containing only modifications of the trilinear coupling, through a c6λ H6/v2 Lagrangian term, and then examine the full parameter space of the effective theory, incorporating current bounds obtained through single Higgs b…